\(\int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^2} \, dx\) [718]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [F(-1)]
   Sympy [F(-1)]
   Maxima [F(-1)]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 35, antiderivative size = 270 \[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^2} \, dx=\frac {\left (3 A b^2-a^2 (2 A-C)\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 \left (a^2-b^2\right ) d}+\frac {\left (A b^2+a^2 C\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{a b \left (a^2-b^2\right ) d}+\frac {\left (3 A b^4-a^4 C-a^2 b^2 (5 A+C)\right ) \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{a^2 (a-b) b (a+b)^2 d}-\frac {\left (3 A b^2-a^2 (2 A-C)\right ) \sin (c+d x)}{a^2 \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)}}+\frac {\left (A b^2+a^2 C\right ) \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} (a+b \cos (c+d x))} \]

[Out]

(3*A*b^2-a^2*(2*A-C))*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a^
2/(a^2-b^2)/d+(A*b^2+C*a^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/
2))/a/b/(a^2-b^2)/d+(3*A*b^4-a^4*C-a^2*b^2*(5*A+C))*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi
(sin(1/2*d*x+1/2*c),2*b/(a+b),2^(1/2))/a^2/(a-b)/b/(a+b)^2/d-(3*A*b^2-a^2*(2*A-C))*sin(d*x+c)/a^2/(a^2-b^2)/d/
cos(d*x+c)^(1/2)+(A*b^2+C*a^2)*sin(d*x+c)/a/(a^2-b^2)/d/(a+b*cos(d*x+c))/cos(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 1.08 (sec) , antiderivative size = 270, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {3135, 3134, 3138, 2719, 3081, 2720, 2884} \[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^2} \, dx=\frac {\left (a^2 C+A b^2\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{a b d \left (a^2-b^2\right )}+\frac {\left (3 A b^2-a^2 (2 A-C)\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d \left (a^2-b^2\right )}-\frac {\left (3 A b^2-a^2 (2 A-C)\right ) \sin (c+d x)}{a^2 d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)}}+\frac {\left (a^2 C+A b^2\right ) \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))}+\frac {\left (a^4 (-C)-a^2 b^2 (5 A+C)+3 A b^4\right ) \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{a^2 b d (a-b) (a+b)^2} \]

[In]

Int[(A + C*Cos[c + d*x]^2)/(Cos[c + d*x]^(3/2)*(a + b*Cos[c + d*x])^2),x]

[Out]

((3*A*b^2 - a^2*(2*A - C))*EllipticE[(c + d*x)/2, 2])/(a^2*(a^2 - b^2)*d) + ((A*b^2 + a^2*C)*EllipticF[(c + d*
x)/2, 2])/(a*b*(a^2 - b^2)*d) + ((3*A*b^4 - a^4*C - a^2*b^2*(5*A + C))*EllipticPi[(2*b)/(a + b), (c + d*x)/2,
2])/(a^2*(a - b)*b*(a + b)^2*d) - ((3*A*b^2 - a^2*(2*A - C))*Sin[c + d*x])/(a^2*(a^2 - b^2)*d*Sqrt[Cos[c + d*x
]]) + ((A*b^2 + a^2*C)*Sin[c + d*x])/(a*(a^2 - b^2)*d*Sqrt[Cos[c + d*x]]*(a + b*Cos[c + d*x]))

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 3081

Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*sin[
(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[B/d, Int[(a + b*Sin[e + f*x])^m, x], x] - Dist[(B*c - A*d)/d, Int[(a +
 b*Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
&& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3134

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e
+ f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2))), x] + D
ist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*
(b*c - a*d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - a*b*B + a^2*C) + (m + 1)*(
b*c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x]
/; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&
LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n]
&&  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3135

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 + a^2*C))*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c
+ d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2))), x] + Dist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)),
 Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[a*(m + 1)*(b*c - a*d)*(A + C) + d*(A*b^2 + a^2*C
)*(m + n + 2) - (c*(A*b^2 + a^2*C) + b*(m + 1)*(b*c - a*d)*(A + C))*Sin[e + f*x] - d*(A*b^2 + a^2*C)*(m + n +
3)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2,
0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && L
tQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3138

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[C/(b*d), Int[Sqrt[a + b*Sin[e + f*x]]
, x], x] - Dist[1/(b*d), Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[e + f*x], x]/(Sqrt[a + b*Sin[e +
 f*x]]*(c + d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {\left (A b^2+a^2 C\right ) \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} (a+b \cos (c+d x))}+\frac {\int \frac {\frac {1}{2} \left (-3 A b^2+2 a^2 \left (A-\frac {C}{2}\right )\right )-a b (A+C) \cos (c+d x)+\frac {1}{2} \left (A b^2+a^2 C\right ) \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))} \, dx}{a \left (a^2-b^2\right )} \\ & = -\frac {\left (3 A b^2-a^2 (2 A-C)\right ) \sin (c+d x)}{a^2 \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)}}+\frac {\left (A b^2+a^2 C\right ) \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} (a+b \cos (c+d x))}+\frac {2 \int \frac {\frac {1}{4} b \left (3 A b^2-a^2 (4 A+C)\right )+\frac {1}{2} a \left (2 A b^2-a^2 (A-C)\right ) \cos (c+d x)+\frac {1}{4} b \left (3 A b^2-a^2 (2 A-C)\right ) \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{a^2 \left (a^2-b^2\right )} \\ & = -\frac {\left (3 A b^2-a^2 (2 A-C)\right ) \sin (c+d x)}{a^2 \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)}}+\frac {\left (A b^2+a^2 C\right ) \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} (a+b \cos (c+d x))}-\frac {2 \int \frac {-\frac {1}{4} b^2 \left (3 A b^2-a^2 (4 A+C)\right )-\frac {1}{4} a b \left (A b^2+a^2 C\right ) \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{a^2 b \left (a^2-b^2\right )}+\frac {\left (3 A b^2-a^2 (2 A-C)\right ) \int \sqrt {\cos (c+d x)} \, dx}{2 a^2 \left (a^2-b^2\right )} \\ & = \frac {\left (3 A b^2-a^2 (2 A-C)\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 \left (a^2-b^2\right ) d}-\frac {\left (3 A b^2-a^2 (2 A-C)\right ) \sin (c+d x)}{a^2 \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)}}+\frac {\left (A b^2+a^2 C\right ) \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} (a+b \cos (c+d x))}+\frac {\left (A b^2+a^2 C\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{2 a b \left (a^2-b^2\right )}+\frac {\left (3 A b^4-a^4 C-a^2 b^2 (5 A+C)\right ) \int \frac {1}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{2 a^2 b \left (a^2-b^2\right )} \\ & = \frac {\left (3 A b^2-a^2 (2 A-C)\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 \left (a^2-b^2\right ) d}+\frac {\left (A b^2+a^2 C\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{a b \left (a^2-b^2\right ) d}+\frac {\left (3 A b^4-a^4 C-a^2 b^2 (5 A+C)\right ) \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{a^2 (a-b) b (a+b)^2 d}-\frac {\left (3 A b^2-a^2 (2 A-C)\right ) \sin (c+d x)}{a^2 \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)}}+\frac {\left (A b^2+a^2 C\right ) \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} (a+b \cos (c+d x))} \\ \end{align*}

Mathematica [A] (verified)

Time = 4.67 (sec) , antiderivative size = 306, normalized size of antiderivative = 1.13 \[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^2} \, dx=\frac {-\frac {-\frac {2 \left (-9 A b^3+a^2 b (10 A+C)\right ) \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{a+b}+\frac {\left (8 a A b^2-4 a^3 (A-C)\right ) \left (2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )-\frac {2 a \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{a+b}\right )}{b}-\frac {2 \left (-3 A b^2+a^2 (2 A-C)\right ) \left (-2 a b E\left (\left .\arcsin \left (\sqrt {\cos (c+d x)}\right )\right |-1\right )+2 a (a+b) \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\cos (c+d x)}\right ),-1\right )+\left (-2 a^2+b^2\right ) \operatorname {EllipticPi}\left (-\frac {b}{a},\arcsin \left (\sqrt {\cos (c+d x)}\right ),-1\right )\right ) \sin (c+d x)}{a b \sqrt {\sin ^2(c+d x)}}}{(-a+b) (a+b)}+4 \sqrt {\cos (c+d x)} \left (\frac {\left (A b^3+a^2 b C\right ) \sin (c+d x)}{\left (-a^2+b^2\right ) (a+b \cos (c+d x))}+2 A \tan (c+d x)\right )}{4 a^2 d} \]

[In]

Integrate[(A + C*Cos[c + d*x]^2)/(Cos[c + d*x]^(3/2)*(a + b*Cos[c + d*x])^2),x]

[Out]

(-(((-2*(-9*A*b^3 + a^2*b*(10*A + C))*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(a + b) + ((8*a*A*b^2 - 4*a^3
*(A - C))*(2*EllipticF[(c + d*x)/2, 2] - (2*a*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(a + b)))/b - (2*(-3*
A*b^2 + a^2*(2*A - C))*(-2*a*b*EllipticE[ArcSin[Sqrt[Cos[c + d*x]]], -1] + 2*a*(a + b)*EllipticF[ArcSin[Sqrt[C
os[c + d*x]]], -1] + (-2*a^2 + b^2)*EllipticPi[-(b/a), ArcSin[Sqrt[Cos[c + d*x]]], -1])*Sin[c + d*x])/(a*b*Sqr
t[Sin[c + d*x]^2]))/((-a + b)*(a + b))) + 4*Sqrt[Cos[c + d*x]]*(((A*b^3 + a^2*b*C)*Sin[c + d*x])/((-a^2 + b^2)
*(a + b*Cos[c + d*x])) + 2*A*Tan[c + d*x]))/(4*a^2*d)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(871\) vs. \(2(344)=688\).

Time = 12.41 (sec) , antiderivative size = 872, normalized size of antiderivative = 3.23

method result size
default \(\text {Expression too large to display}\) \(872\)

[In]

int((A+C*cos(d*x+c)^2)/cos(d*x+c)^(3/2)/(a+cos(d*x+c)*b)^2,x,method=_RETURNVERBOSE)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*A/a^2/sin(1/2*d*x+1/2*c)^2/(2*sin(1/2*d*x+1/2*c)
^2-1)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-(sin(1/2
*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))-4*(-A*b^2+C*a^2)/
a^2/(-2*a*b+2*b^2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin
(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))+2*(-A*b^2-C*a^2)/a/b*(-1/a*b^2/(a^2
-b^2)*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*b*cos(1/2*d*x+1/2*c)^2+a-b)-1
/2/a/(a+b)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x
+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-1/2/(a^2-b^2)*b/a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(
1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^
(1/2))+1/2/(a^2-b^2)*b/a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)
^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-3*a/(a^2-b^2)/(-2*a*b+2*b^2)*b*(sin(1/2*d
*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*Elli
pticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))+1/a/(a^2-b^2)/(-2*a*b+2*b^2)*b^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-
2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/
2*c),-2*b/(a-b),2^(1/2))))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [F(-1)]

Timed out. \[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^2} \, dx=\text {Timed out} \]

[In]

integrate((A+C*cos(d*x+c)^2)/cos(d*x+c)^(3/2)/(a+b*cos(d*x+c))^2,x, algorithm="fricas")

[Out]

Timed out

Sympy [F(-1)]

Timed out. \[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^2} \, dx=\text {Timed out} \]

[In]

integrate((A+C*cos(d*x+c)**2)/cos(d*x+c)**(3/2)/(a+b*cos(d*x+c))**2,x)

[Out]

Timed out

Maxima [F(-1)]

Timed out. \[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^2} \, dx=\text {Timed out} \]

[In]

integrate((A+C*cos(d*x+c)^2)/cos(d*x+c)^(3/2)/(a+b*cos(d*x+c))^2,x, algorithm="maxima")

[Out]

Timed out

Giac [F]

\[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^2} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + A}{{\left (b \cos \left (d x + c\right ) + a\right )}^{2} \cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate((A+C*cos(d*x+c)^2)/cos(d*x+c)^(3/2)/(a+b*cos(d*x+c))^2,x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + A)/((b*cos(d*x + c) + a)^2*cos(d*x + c)^(3/2)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^2} \, dx=\int \frac {C\,{\cos \left (c+d\,x\right )}^2+A}{{\cos \left (c+d\,x\right )}^{3/2}\,{\left (a+b\,\cos \left (c+d\,x\right )\right )}^2} \,d x \]

[In]

int((A + C*cos(c + d*x)^2)/(cos(c + d*x)^(3/2)*(a + b*cos(c + d*x))^2),x)

[Out]

int((A + C*cos(c + d*x)^2)/(cos(c + d*x)^(3/2)*(a + b*cos(c + d*x))^2), x)